Tur, A.E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing, Nat. Photonics. 6 (2012) 488–496. https://doi.org/10.1038/nphoton.2012.138. [3] A. Ablez, K. Toyoda, K. Miyamoto, T. Omatsu, Nanotwist of aluminum with irradiation of a single optical vortex pulse, OSA Contin. 4 (2021) 403. https://doi.org/10.1364/osac.417444. [4] A. Ablez, K. Toyoda, K. Miyamoto, T. Omatsu, Microneedle structuring of Si(111) by irradiation with picosecond optical vortex pulses, Appl. Phys. Express. 13 (2020). https://doi.org/10.35848/1882-0786/ab8d4b. [5] R. Nakamura, H. Kawaguchi, M. Iwata, A. Kaneko, R. Nagura, S. Kawano, K. Toyoda, K. Miyamoto, T. Omatsu, Optical vortex-induced forward mass transfer: Manifestation of helical trajectory of optical vortex, Opt. Express. 27 (2019) 38019–38027. https://doi.org/10.1364/oe.382288. [6] K. Masuda, S. Nakano, D. Barada, M. Kumakura, K. Miyamoto, T. Omatsu, Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam, Opt. Express. 25 (2017) 12499–12507. https://doi.org/10.1364/OE.25.012499. [7] F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle, Nat. Publ. Gr. (2016) 1–10. https://doi.org/10.1038/srep21738. [8] K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, T. Omatsu, Transfer of light helicity to nanostructures, Phys. Rev. Lett. 110 (2013) 1–5. https://doi.org/10.1103/PhysRevLett.110.143603. [9] K. Yamane, Z. Yang, Y. Toda, R. Morita, Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction, New J. Phys. 16 (2014). https://doi.org/10.1088/1367-2630/16/5/053020. [10] Y. Nakata, K. Tsuchida, N. Miyanaga, H. Furusho, Liquidly process in femtosecond laser processing, Appl. Surf. Sci. 255 (2009) 9761–9763. https://doi.org/10.1016/j.apsusc.2009.04.066. [11] Y. Nakata, T. Okada, M. Maeda, Nano-sized hollow bump array generated by single femtosecond laser pulse, Jpn. J. Appl. Phys. Part 2 Lett. 42 (2003) L1452–L1454. https://doi.org/10.1143/JJAP.42.L1452. [12] Y. Nakata, N. Miyanaga, K. Momoo, T. Hiromoto, Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation, Appl. Surf. Sci. 274 (2013) 27–32. https://doi.org/10.1016/j.apsusc.2013.02.042. [13] Y. Nakata, M. Yoshida, N. Miyanaga, Parallel fabrication of spiral surface structures by interference pattern of circularly polarized beams, Sci. Rep. 8 (2018) 13448. https://doi.org/10.1038/s41598-018-31834-3. [14] Y. Nakata, K. Murakawa, K. Sonoda, K. Momoo, N. Miyanaga, Design of interference using coherent beams configured as a six-sided pyramid, Appl. Opt. 51 (2012) 5004. [15] Y. Nakata, T. Hiromoto, N. Miyanaga, Mesoscopic nanomaterials generated by interfering femtosecond laser processing, Appl. Phys. A Mater. Sci. Process. 101 (2010) 471–474. https://doi.org/10.1007/s00339-010-5960-1. [16] Y. Nakata, K. Murakawa, K. Sonoda, K. Momoo, N. Miyanaga, T. Hiromoto, Designing of interference pattern in ultra-short pulse laser processing, Appl. Phys. A. 112 (2012) 191–196. https://doi.org/10.1007/s00339-012-7239-1. [17] Y. Nakata, K. Osawa, N. Miyanaga, Utilization of the high spatial-frequency component in adaptive beam shaping by using a virtual diagonal phase grating, Sci. Rep. 9 (2019) 1–11. https://doi.org/10.1038/s41598-019-40829-7. [18] Y. Nakata, N. Miyanaga, K. Osawa, Numerical simulation of an adaptive beam-shaping technique using a phase grating overlapped via a spatial light modulator for precision square–flat-top beam, Appl. Phys. A. 126 (2020) 1–6. https://doi.org/10.1007/s00339-020-03496-4. [19] Y. Nakata, Y. Hirakawa, T. Morizuka, Y. Kosaka, N. Miyanaga, K. Osawa, Improved Efficiency of an Adaptive Beam-Shaping Technique Based on Phase Gratings and Spatial Frequency Filtering, J. Laser − 171 −
元のページ ../index.html#173